Preprojective Modules and Auslander-Reiten Components

نویسنده

  • Shiping Liu
چکیده

In [2], Auslander and Smalø introduced and studied extensively preprojective modules and preinjective modules over an artin algebra. We now call a module hereditarily preprojective or hereditarily preinjective if its submodules are all preprojective or its quotient modules are all preinjective, respectively. In [4], Coelho studied Auslander-Reiten components containing only hereditarily preprojective modules and gave a number of characterizations of such components. We shall study further these modules by using the description of shapes of semi-stable Auslander-Reiten components; see [6, 7]. Our results will imply the result of Coelho [4, (1.2)] and that of Auslander-Smalø [2, (9.16)]. As an application, moreover, we shall show that a stable Auslander-Reiten component with “few” stable maps in TrD-direction is of shape ZZA∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shapes of Connected Components of the Auslansder-Reiten Quivers of Artin Algebras

The aim of these notes is to report some new developments on the problem of describing all possible shapes of the connected components of the Auslander-Reiten quiver ΓA of an artin algebra A. The problem is interesting since the shapes of these components carry some important information of the module category of A. For instance the algebra A is hereditary if and only if ΓA has a connected comp...

متن کامل

An algorithm for finding all preprojective components of the Auslander-Reiten quiver

The Auslander-Reiten quiver of a finite-dimensional associative algebra A encodes information about the indecomposable finite-dimensional representations of A and their homomorphisms. A component of the AuslanderReiten quiver is called preprojective if it does not admit oriented cycles and each of its modules can be shifted into a projective module using the AuslanderReiten translation. Preproj...

متن کامل

Comparison of Auslander-Reiten theory and Gabriel-Roiter measure approach to the module categories of tame hereditary algebras

Let Λ be a tame hereditary algebra over an algebraically closed field, i.e. Λ = kQ with Q a quiver of type Ãn, D̃n, Ẽ6, Ẽ7, or Ẽ8. Two different kinds of partitions of the module category can be obtained by using Auslander-Reiten theory, and on the other hand, Gabriel-Roiter measure approach. We compare these two kinds of partitions and see how the modules are rearranged according to Gabriel-Roi...

متن کامل

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

Auslander-reiten Components Containing Modules with Bounded Betti Numbers

Let R be a connected selfinjective Artin algebra, and M an indecomposable nonprojective R-module with bounded Betti numbers lying in a regular component of the Auslander-Reiten quiver of R. We prove that the Auslander-Reiten sequence ending at M has at most two indecomposable summands in the middle term. Furthermore we show that the component of the Auslander-Reiten quiver containing M is eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004